Sunday, March 27, 2022

How to control Power Factor

 What is Power Factor? 

Power Factor is an expression of energy efficiency. It is usually expressed as a percentage; and the lower the percentage the less efficient power usage is. 

Power Factor expresses the ratio of true power used in a circuit to the apparent power delivered to the circuit. A 96% power factor demonstrates more efficiency than a 75% power factor. Power Factor below 95% is considered inefficient. 

Power Factor is the measure if how effectively your business uses its electricity. It is the ratio of real power (MW) to apparent power (MVAR). A site with low power factor draws more apparent power than real power (importing). So, if your power factor is low, you may be paying more than you need to for your electricity. 

How to Control Power Factor

1.)   Before synchronizing the Generator to the Grid, check OLTC setting; OLTC default setting is 13  

2.)   Upon synchronizing the Generator to the Grid, adjust the OLTC as per Voltage of the Grid. A corresponding HV is set vs LV. 

3.)   If the Step-up Transformer Voltage is higher than the Grid, reactive power will be exporting and if Step-up Transformer Voltage is lower than the Grid, reactive power will be importing. 

4.)   Ideally power factor is to be set at unity 1 but it is difficult to achieve. This is due to varying reactive power from various motors connected to the grid. 

5.)   Importing and Exporting of Power Factor affects 52G Circuit Breaker; Monitor the Amperes of the Circuit Breaker upstream to the Grid. Take note of the tripping setpoint of the Circuit Breaker on Current. 

6.)   If importing reactive power, increase Generator Voltage 

7.)   If exporting reactive power, decrease Generator Voltage 

8.)   Monitor closely Grid frequency during Generator Voltage variation 

9.)   If the Generator Voltage is maxed out whilst increasing/decreasing, it is time to change the tap:

a.     Lower Tap Position > Higher Generator Voltage

b.     Higher Tap Position < Lower Generator Voltage

10.) If the Tap Position of the Step-up Transformer is maxed out, and the Generator Voltage is still far off to the Grid, asked Western Power to energize their Capacitor Bank 

11.)  Otherwise, Operator can adjust the Grid Voltage by asking other Power Plant (Bigger Plant) to minimise their Step-up Transformer to a sustainable Grid Voltage. 

Logic example: 

Say the grid voltage is at 135.6 kV, we should aim to produce the same Voltage or higher by selecting the appropriate Tap Position corresponding to the Grid Voltage. If Generation is not greater or lower than the grid voltage, we will be importing reactive power and subsequently dropping our power factor in the process and minimising our generation due to high import of reactive power. Furthermore, high import of reactive power will cause overheating of Generator Stator end winding and high operation cost. Generator Efficiency will be diminished. 

 

1, 2 SUT 

Tap Position

HV 

HV amps @ 67.5 MVA 

HV Amps @ 90 MVA 

LV 

1

151800

257

342

11000

 

2

150150

260

346

3

148500

263

350

4

146850

266

254

5

145200

269

358

6

143550

272

362

7

141900

275

366

8

140250

279

371

9

138600

282

375

10

136950

285

379

11

135300

289

384

12

133650

292

389

13

132000

296

394[ds1] 

14

130350

300

399

15

128700

304

404

16

127050

308

409

17

125400

311

414

 

3, 4 SUT 

Tap Position

HV 

HV amps @ 67.5 MVA 

HV Amps @ 90 MVA 

LV 

1

151800

257

342

11000

 

2

150150

260

346

3

148500

263

350

4

146850

266

254

5

145200

269

358

6

143550

272

362

7

141900

275

366

8

140250

279

371

9

138600

282

375

10

136950

285

379

11

135300

289

384

12

133650

292

389

13

132000

296

394[ds2] 

14

130350

300

399

15

128700

304

404

16

127050

308

409

17

125400

311

414

 

4, 5 SUT 

Tap Position

HV 

HV amps @ 67.5 MVA 

HV Amps @ 90 MVA 

LV 

1

151800

257

342

11000

 

2

150150

260

346

3

148500

263

350

4

146850

266

254

5

145200

269

358

6

143550

272

362

7

141900

275

366

8

140250

279

371

9

138600

282

375

10

136950

285

379

11

135300

289

384

12

133650

292

389

13

132000

296

394[ds3] 

14

130350

300

399

15

128700

304

404

16

127050

308

409

17

125400

311

414

 

7 SUT 

Tap Position

HV 

@ 67.5 MVA 

@ 90 MVA 

LV 

1

151800

257

342

11000

 

2

150150

260

346

3

148500

263

350

4

146850

266

354

5

145200

269

358

6

143550

272

362

7

141900

275

366

8

140250

279

371

9

138600

282

375

10

136950

285

379

11

135300

289

384

12

133650

292

389

13

132000

300

399[ds4] 

14

130350

304

404

15

128700

308

409

16

127050

308

409

17

125400

311

414

 

9 SUT 

Tap Position

HV 

ONAN 

ONAF 

LV 

1

151800

380

532

11000

 

2

150150

385

536

3

148500

389

544

4

146850

393

550

5

145200

398

557

6

143550

402

563

7

141900

407

570

8

140250

412

576

9

138600

417

583

10

136950

422

590

11

135300

427

597

12

133650

432

605

13

132000

437

612[ds5] 

14

130350

443

620

15

128700

449

628

16

127050

454

636

17

125400

460

645

 

11 SUT 

Tap Position 

HV 

ONAN 

ONAF 1

ONAF 2 

LV 

1

151800

323

399

532

15000

2

150150

327

404

538

3

148500

330

408

544

4

146850

334

413

550

5

145200

338

418

557

6

143550

342

422

563

7

141900

346

427

570

8

140250

350

432

576

9

138600

354

437

583

10

136950

358

443

590

11

135300

383

448

597

12

133650

367

454

605

13

132000

372

459

612[ds6] 

14

130350

376

465

620

15

128700

381

471

628

16

127050

386

477

636

17

125400

391

483

545

 

9 Step down Auxiliary Tx – 11kV to 3.3 kV 

Tap Position 

HV 

LV 

1

11825

3450

2

11550

3

11275

4

11000[ds7] 

5

10725

6

10450

7

10175

 

9 Step Down Auxiliary Tx – 3.3kV to 415V 

Tap Position 

HV 

LV 

1

3548

433

2

3465

3

3382

4

3300[ds8] 

5

3218

6

3135

7

3052

 

9 Unit Transformer 

Tap Position 

HV

LV 

1

23100

415

2

22550

415

3

22000

415[ds9] 

4

21450

415

5

20900

415

 

11 Unit Transformer 

Tap Position 

HV

LV 

1

15750

6900

2

15375

6900

3

15000

6900[ds10] 

4

14625

6900

5

14250

6900

 

·       Over Excitation Limit (OEL) = limits the generator operating in the overexcited region to within the generator capabilities curve.

·       Under Excitation Limit (UEL) = prevents the AVR from reducing excitation to such a low level that the generator is in danger of losing synchronism, exceeding machine under-excited capability or tripping due to exceeding the loss of excitation protection setting.

o   Typical setting of OEL and UEL is 5% of Generator Voltage rating 

 

MVAR 

 

LEADING

 

LAGGING

 

·      Operate within the region of Stator Winding 

·      MVAR > 0 = Lagging 

·      MVAR < 0 = Leading 

·      MVAR = 0 = Unity 

LEADING = Capacitive Load 

LAGGING = Inductive Load 

 

 

 

Generator Protective Device 

Function Numbers

Description

15

Synchroniser 

21

Distance Protection / Back-up for System general zone phase faults

24

V / Hz Protection 

25

Synch Check Protection 

27

Under Voltage

32

-        Reverse Power Protection 

-        Anti-motoring for Generator 

40

Loss of field Protection 

46

Stator unbalanced Circuit Protection 

49

Stator Thermal Protection 

50B

Instantaneous over current Protection 

51 GN

Time over current protection / Back-up for Generator Ground Faults 

51 TN

Time over current protection / Back-up for ground fault 

51 V

Voltage controlled time over current protection 

59

Over voltage protection 

59 BG

Zero sequencing Voltage protection 

59 GN

-        Voltage Protection 

-        Ground fault protection for Generator 

60

Voltage Balance Protection (Protection for Blown Fuse) 

61

Time over current protection 

62 B

Breaker Failure Protection 

64 F

Primary protection for rotor ground fault 

78

Loss of synchronization protection 

81

Over and under frequency protection 

86

Hand reset lock-out auxiliary relay 

87 B

Primary phase-out fault protection for generator 

87 GN

Sensitive ground fault protection for generator 

87 T

Differential protection for Transformer 

87 U

Differential protection for overall unit protection of generator and transformer 

94

Self-reset auxiliary tripping relay 

 


 [ds1]Default Tap Position 

 [ds2]Default Tap Position 

 [ds3]Default Tap Position 

 [ds4]Default Tap Position 

 [ds5]Default Tap Position 

 [ds6]Default Tap Position 

 [ds7]Default Tap Position 

 [ds8]Default Tap Position 

 [ds9]Default Tap Position 

 [ds10]Default Tap Position 

A Son Never Forgets

Before moving to Australia in 2014, I spent a decade working in the Middle East, from 2004 to 2014. I held the position of Lead Power Contro...