What is Power Factor?
Power Factor is an expression of energy efficiency. It is usually expressed as a percentage; and the lower the percentage the less efficient power usage is.
Power Factor expresses the ratio of true power used in a circuit to the apparent power delivered to the circuit. A 96% power factor demonstrates more efficiency than a 75% power factor. Power Factor below 95% is considered inefficient.
Power Factor is the measure if how effectively your business uses its electricity. It is the ratio of real power (MW) to apparent power (MVAR). A site with low power factor draws more apparent power than real power (importing). So, if your power factor is low, you may be paying more than you need to for your electricity.
How to Control Power Factor
1.) Before synchronizing the Generator to the Grid, check OLTC setting; OLTC default setting is 13
2.) Upon synchronizing the Generator to the Grid, adjust the OLTC as per Voltage of the Grid. A corresponding HV is set vs LV.
3.) If the Step-up Transformer Voltage is higher than the Grid, reactive power will be exporting and if Step-up Transformer Voltage is lower than the Grid, reactive power will be importing.
4.) Ideally power factor is to be set at unity 1 but it is difficult to achieve. This is due to varying reactive power from various motors connected to the grid.
5.) Importing and Exporting of Power Factor affects 52G Circuit Breaker; Monitor the Amperes of the Circuit Breaker upstream to the Grid. Take note of the tripping setpoint of the Circuit Breaker on Current.
6.) If importing reactive power, increase Generator Voltage
7.) If exporting reactive power, decrease Generator Voltage
8.) Monitor closely Grid frequency during Generator Voltage variation
9.) If the Generator Voltage is maxed out whilst increasing/decreasing, it is time to change the tap:
a. Lower Tap Position > Higher Generator Voltage
b. Higher Tap Position < Lower Generator Voltage
10.) If the Tap Position of the Step-up Transformer is maxed out, and the Generator Voltage is still far off to the Grid, asked Western Power to energize their Capacitor Bank
11.) Otherwise, Operator can adjust the Grid Voltage by asking other Power Plant (Bigger Plant) to minimise their Step-up Transformer to a sustainable Grid Voltage.
Logic example:
Say the grid voltage is at 135.6 kV, we should aim to produce the same Voltage or higher by selecting the appropriate Tap Position corresponding to the Grid Voltage. If Generation is not greater or lower than the grid voltage, we will be importing reactive power and subsequently dropping our power factor in the process and minimising our generation due to high import of reactive power. Furthermore, high import of reactive power will cause overheating of Generator Stator end winding and high operation cost. Generator Efficiency will be diminished.
1, 2 SUT
Tap Position | HV | HV amps @ 67.5 MVA | HV Amps @ 90 MVA | LV |
1 | 151800 | 257 | 342 | 11000 |
2 | 150150 | 260 | 346 | |
3 | 148500 | 263 | 350 | |
4 | 146850 | 266 | 254 | |
5 | 145200 | 269 | 358 | |
6 | 143550 | 272 | 362 | |
7 | 141900 | 275 | 366 | |
8 | 140250 | 279 | 371 | |
9 | 138600 | 282 | 375 | |
10 | 136950 | 285 | 379 | |
11 | 135300 | 289 | 384 | |
12 | 133650 | 292 | 389 | |
132000 | 296 | 394[ds1] | ||
14 | 130350 | 300 | 399 | |
15 | 128700 | 304 | 404 | |
16 | 127050 | 308 | 409 | |
17 | 125400 | 311 | 414 |
3, 4 SUT
Tap Position | HV | HV amps @ 67.5 MVA | HV Amps @ 90 MVA | LV |
1 | 151800 | 257 | 342 | 11000 |
2 | 150150 | 260 | 346 | |
3 | 148500 | 263 | 350 | |
4 | 146850 | 266 | 254 | |
5 | 145200 | 269 | 358 | |
6 | 143550 | 272 | 362 | |
7 | 141900 | 275 | 366 | |
8 | 140250 | 279 | 371 | |
9 | 138600 | 282 | 375 | |
10 | 136950 | 285 | 379 | |
11 | 135300 | 289 | 384 | |
12 | 133650 | 292 | 389 | |
132000 | 296 | 394[ds2] | ||
14 | 130350 | 300 | 399 | |
15 | 128700 | 304 | 404 | |
16 | 127050 | 308 | 409 | |
17 | 125400 | 311 | 414 |
4, 5 SUT
Tap Position | HV | HV amps @ 67.5 MVA | HV Amps @ 90 MVA | LV |
1 | 151800 | 257 | 342 | 11000 |
2 | 150150 | 260 | 346 | |
3 | 148500 | 263 | 350 | |
4 | 146850 | 266 | 254 | |
5 | 145200 | 269 | 358 | |
6 | 143550 | 272 | 362 | |
7 | 141900 | 275 | 366 | |
8 | 140250 | 279 | 371 | |
9 | 138600 | 282 | 375 | |
10 | 136950 | 285 | 379 | |
11 | 135300 | 289 | 384 | |
12 | 133650 | 292 | 389 | |
132000 | 296 | 394[ds3] | ||
14 | 130350 | 300 | 399 | |
15 | 128700 | 304 | 404 | |
16 | 127050 | 308 | 409 | |
17 | 125400 | 311 | 414 |
7 SUT
Tap Position | HV | @ 67.5 MVA | @ 90 MVA | LV |
1 | 151800 | 257 | 342 | 11000 |
2 | 150150 | 260 | 346 | |
3 | 148500 | 263 | 350 | |
4 | 146850 | 266 | 354 | |
5 | 145200 | 269 | 358 | |
6 | 143550 | 272 | 362 | |
7 | 141900 | 275 | 366 | |
8 | 140250 | 279 | 371 | |
9 | 138600 | 282 | 375 | |
10 | 136950 | 285 | 379 | |
11 | 135300 | 289 | 384 | |
12 | 133650 | 292 | 389 | |
132000 | 300 | 399[ds4] | ||
14 | 130350 | 304 | 404 | |
15 | 128700 | 308 | 409 | |
16 | 127050 | 308 | 409 | |
17 | 125400 | 311 | 414 |
9 SUT
Tap Position | HV | ONAN | ONAF | LV |
1 | 151800 | 380 | 532 | 11000 |
2 | 150150 | 385 | 536 | |
3 | 148500 | 389 | 544 | |
4 | 146850 | 393 | 550 | |
5 | 145200 | 398 | 557 | |
6 | 143550 | 402 | 563 | |
7 | 141900 | 407 | 570 | |
8 | 140250 | 412 | 576 | |
9 | 138600 | 417 | 583 | |
10 | 136950 | 422 | 590 | |
11 | 135300 | 427 | 597 | |
12 | 133650 | 432 | 605 | |
132000 | 437 | 612[ds5] | ||
14 | 130350 | 443 | 620 | |
15 | 128700 | 449 | 628 | |
16 | 127050 | 454 | 636 | |
17 | 125400 | 460 | 645 |
11 SUT
Tap Position | HV | ONAN | ONAF 1 | ONAF 2 | LV |
1 | 151800 | 323 | 399 | 532 | 15000 |
2 | 150150 | 327 | 404 | 538 | |
3 | 148500 | 330 | 408 | 544 | |
4 | 146850 | 334 | 413 | 550 | |
5 | 145200 | 338 | 418 | 557 | |
6 | 143550 | 342 | 422 | 563 | |
7 | 141900 | 346 | 427 | 570 | |
8 | 140250 | 350 | 432 | 576 | |
9 | 138600 | 354 | 437 | 583 | |
10 | 136950 | 358 | 443 | 590 | |
11 | 135300 | 383 | 448 | 597 | |
12 | 133650 | 367 | 454 | 605 | |
132000 | 372 | 459 | 612[ds6] | ||
14 | 130350 | 376 | 465 | 620 | |
15 | 128700 | 381 | 471 | 628 | |
16 | 127050 | 386 | 477 | 636 | |
17 | 125400 | 391 | 483 | 545 |
9 Step down Auxiliary Tx – 11kV to 3.3 kV
Tap Position | HV | LV |
1 | 11825 | 3450 |
2 | 11550 | |
3 | 11275 | |
11000[ds7] | ||
5 | 10725 | |
6 | 10450 | |
7 | 10175 |
9 Step Down Auxiliary Tx – 3.3kV to 415V
Tap Position | HV | LV |
1 | 3548 | 433 |
2 | 3465 | |
3 | 3382 | |
3300[ds8] | ||
5 | 3218 | |
6 | 3135 | |
7 | 3052 |
9 Unit Transformer
Tap Position | HV | LV |
1 | 23100 | 415 |
2 | 22550 | 415 |
22000 | 415[ds9] | |
4 | 21450 | 415 |
5 | 20900 | 415 |
11 Unit Transformer
Tap Position | HV | LV |
1 | 15750 | 6900 |
2 | 15375 | 6900 |
15000 | 6900[ds10] | |
4 | 14625 | 6900 |
5 | 14250 | 6900 |
· Over Excitation Limit (OEL) = limits the generator operating in the overexcited region to within the generator capabilities curve.
· Under Excitation Limit (UEL) = prevents the AVR from reducing excitation to such a low level that the generator is in danger of losing synchronism, exceeding machine under-excited capability or tripping due to exceeding the loss of excitation protection setting.
o Typical setting of OEL and UEL is 5% of Generator Voltage rating
|
|
|
· Operate within the region of Stator Winding
· MVAR > 0 = Lagging
· MVAR < 0 = Leading
· MVAR = 0 = Unity
LEADING = Capacitive Load
LAGGING = Inductive Load
Generator Protective Device
Function Numbers | Description |
15 | Synchroniser |
21 | Distance Protection / Back-up for System general zone phase faults |
24 | V / Hz Protection |
25 | Synch Check Protection |
27 | Under Voltage |
32 | - Reverse Power Protection - Anti-motoring for Generator |
40 | Loss of field Protection |
46 | Stator unbalanced Circuit Protection |
49 | Stator Thermal Protection |
50B | Instantaneous over current Protection |
51 GN | Time over current protection / Back-up for Generator Ground Faults |
51 TN | Time over current protection / Back-up for ground fault |
51 V | Voltage controlled time over current protection |
59 | Over voltage protection |
59 BG | Zero sequencing Voltage protection |
59 GN | - Voltage Protection - Ground fault protection for Generator |
60 | Voltage Balance Protection (Protection for Blown Fuse) |
61 | Time over current protection |
62 B | Breaker Failure Protection |
64 F | Primary protection for rotor ground fault |
78 | Loss of synchronization protection |
81 | Over and under frequency protection |
86 | Hand reset lock-out auxiliary relay |
87 B | Primary phase-out fault protection for generator |
87 GN | Sensitive ground fault protection for generator |
87 T | Differential protection for Transformer |
87 U | Differential protection for overall unit protection of generator and transformer |
94 | Self-reset auxiliary tripping relay |
No comments:
Post a Comment